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By definition, any system that tries to model the architectural details of the neocortex is a biologically inspired model or neural network [54][55]. Computers cannot accomplish human-like performance for many tasks such as visual pattern recognition, understanding spoken language, recognizing and manipulating objects by touch, and navigating in a complex world. After decades of research, there exist no significant viable algorithms to achieve human-like performance on a computer or special hardware accelerator.  So far, there has been not much research and development in hardware for the biologically inspired software models. The hardware implementation of large-scale neural networks is an excellent candidate application for the high density computation and storage possible with current and emerging semiconductor technologies [84]. Besides, hardware implementation is much faster than software, the primary motivation for this dissertation research is to engineer a system level design in hardware that can be used for many biologically inspired computation and other similar applications.
[bookmark: _Toc449094988]Associative Memory
An associative memory (AM) [50] can recall information from incomplete or noisy inputs and as such, AM has applications in pattern recognition, facial recognition, robot vision, robot motion, DSP, voice recognition, and big data analysis. Research on the potential mapping of the AMs onto the nano-scale electronics provides useful insight into the development of non-von-Neumann neuromorphic architectures. A datapath for implementing an AM can be implemented using common hardware elements, such as, adder, multiplier, simple divider, sorter, comparator and counter. 
Therefore, providing a methodology for non-von-Neuman architecture with nanoscale circuits and devices is one of the targets of this research.

[bookmark: _Toc449094989]Massively Parallel Architecture
Neural network based algorithms generally require massive parallelism. Single Instruction Multiple Data (SIMD) [95], pipelining, and systolic array architecture [95] are typical to DSP, neural network and image processing algorithms. 
The goal of this research is to propose a design methodology for a complete system that can handle large number of wide vectors with a series of SIMD (Single Instruction Multiple Data) type processing elements and pipelined architecture. 

[bookmark: _Toc449094990]Neuromorphic Circuits and Devices
The emergence of many novel nanotechnologies has been primarily driven by the expected scaling limits in conventional CMOS processes. Through such efforts many new and interesting novel neuromorphic circuits and devices have been discovered and invented. Memristor is an example of such a new technology. 
A memristor feature size of F = 50 nm (where, F is the lithographic feature size or half-pitch i.e. half of center-to-center nanowire distance) yields a synaptic density of 1010 memristive synapses per square centimeter, which is comparable to that of the human cortex [89][90]. Therefore, memristor technology shows the prospect of scaling up the capacities of DSP and Image Processing architectures, and associative memories. Hybrid CMOS-Memristor design could be used for architectures which due to their complexity cannot be designed and simulated in real-time in hardware-software using conventional CMOS based design.
As such, this research undertakes the implementation of a complete system level design using binary memristors with IMPLY logic and using a new variant of a CMOL crossbar nano-grid array.

[bookmark: _Toc449094991]Design Methodology Development
The essence of this dissertation work is to develop a new methodology to design a massively parallel and pipelined architecture at a system level using binary memristors for biologically inspired Associative Memory and other similar application areas as mentioned before. The research proposed here will involve the design of an IMPLY-memristor based massively parallel reconfigurable architecture at a system and logic levels.
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[bookmark: _Toc449094993]Part 1: Research Groundwork
Defining Associative Memory
Associative memory (AM) [53][62] is a system that stores mappings from input representations to output representations. When the input pattern is given, the output pattern can be reliably retrieved. When the input is incomplete or noisy, the AM is still able to return the output result corresponding to the original input based on a Best Match procedure where the memory selects the input vector with the closest match, assuming some metric, to the given input, then returns the output vector for this closest matched input vector. 
In Best Match associative memory, vector retrieval is done by matching the contents of each location to a key. This key could represent a subset or a corrupted version of the desired vector. The memory then returns the vector that is closest to the key. Here, closest is based on some metric, such as Euclidean Distance [19][36][37][38][39][40][41][42][43][44][45]. Likewise, the metric can be conditioned so that some vectors are more likely than others, leading to Bayesian-like inference. 
As in associative memories (AM) the information is retrieved through a search: given an input vector one wants to obtain the stored vector that has been previously associated with the input. In a parallel hardware implementation of a large-scale associative memory the memory is searched to find the minimum distance between the new vector and the stored memory vector using the Euclidean distance formula. 

On the other hand, the Exact Match association, as in the traditional content addressable memory (CAM), returns the stored value that corresponding to the exactly matched input. A CAM holds a list of vectors which are distinguished by their addresses, when a particular vector is needed, the exact address of the vector must be provided.

[bookmark: _Toc380437242]History of Associative Memory Algorithm Development
Associative memories can be of different types. The first associative memory model called Die Lernmatrix was introduced by Steinbuch and Piske in 1963. Willshaw model and modified versions (1969-1999) [53], Palm model (1980) [73], and iterative Palm model (1997), Brain-state-in-a-box (BSB) by Anderson et al. (1977, 1993, 1995, 2007), Hopfield network model (1982) [64], Self-Organizing Map (SOM) proposed by Kohonen (1982, 1989) [76][82], Dynamical Associative Memory (DAM) by Amari (1988, 1989), Bidirectional Associative Memory (BAM) by Kosko (1988) [68], Sparse Distributed Memory (SDM) by Kanerva (1988) [56][65][66], Bayesian Confidence propagation Neural Network (BCPNN) by Lansner et al. (1989) [75], Cortronic networks by Hecht-Nielsen (1999), Correlation matrix memories (CMM) [77], Furber model (2007) implemented using Spiking Neural Network (SNN) [51][52][60][72], Spatial and Temporal versions of Self-Organizing Incremental neural Network (SOINN, ESOINN, GAM) by Shen and Hasegawa (2006-2011) [57][79][80], Cortical Learning Algorithms (CLA) by Numenta (2010) are examples of some associative memories [61]. 
System Input Data Encoding 
The input data into a neural network system can be received in any form, e.g. binary data, real-valued data etc. Input data then gets encoded as wide vectors. Different neural network models follow different encoding mechanism. 
After generating the vectors, the similarity between the vectors is measured using the Euclidean distance calculation or calculating the dot product of the two vectors. The similarity is measured through a distance threshold value. A distance threshold constant is used to control the classification of a new node to a new class or to an existing class. During the experimentation, the values of distance threshold are changed several times. A small value of distance threshold may result in a large number of classes. With further experimentation, it is possible to obtain even fewer classes at the output by iterating on the distance threshold constant. 
Evaluation of Associative Memory Algorithm
The purpose of the research was to provide hardware directions for biologically inspired associative memory models. Many groups have developed biologically inspired software based algorithms [61][79][80] to address such problems. A few groups are looking into creating increasingly more sophisticated hardware based models of neural circuits [63][67][87][88][89][93][96], and then apply those models to real applications.
Finding a suitable associative memory algorithm was the initial task for this dissertation work. Through a detailed literature search, some of the most promising models were identified. First, the performance of the associative memory model was evaluated. Next, the capability of sequential or temporal pattern prediction was checked. Based on all the results published by other authors and my own experimentation with software models, one suitable model was identified for this research. 
As a part of this dissertation work, the Kanerva (Furber) SDM Associative memory model and the Palm Associative memory models were implemented by me in Matlab. After evaluation of the two models using the same datasets [69], it was not possible to prove the superiority of one model over the other, as both of these models showed some capability as well as some inaccuracies. The CLA Model [61] used for these experiments is a commercial model by Numenta, Inc. 2010. The Furber Model is a model that was coded in Matlab as a part of my dissertation research, and the coding required certain assumptions based on the original published work by Furber et al. [51][52]. In addition, although the CLA model has the variable order sequence prediction feature [61], the experimental results did not show performance superiority of the CLA model over the Furber Model. As such, we were unable to justify that the CLA model is performing any better than the Furber model and I rather concluded that both models have similar performance and none of the models are completely error free.
These conclusions were the motivation behind an additional literature search to find more models that can provide better solutions to the problem. I found a more promising biologically inspired associative memory model for spatial and temporal pattern recognition by Shen and Hasegawa [57][79][80] through further literature search. This led to the study of their SOINN model, ESOINN Model and finally GAM model, which is the most promising algorithms among all of the models studied. For the purpose of this research, the SOINN [57], and ESOINN algorithm [79] were coded in Matlab for spatial pattern recognition. Later, the complete GAM [80] algorithm was also coded by me [Appendix A], which algorithm does both spatial and temporal pattern recognition. For the spatial pattern recognition experiments, input data was collected from Lecun’s MNIST hand-written digit database [70] both for training and test purposes. The input data was further processed for the purpose of my dissertation research. Upon completion of the training, a different set of images were used to test the performance of the algorithm. 

 ESOINN/ GAM
Shen and Hasegawa proposed several models on pattern recognition, such as the Self-Organizing Incremental Neural Network (SOINN) [57] based on an unsupervised learning technique [58], and the Enhanced Self-Organizing Incremental Neural Network (ESOINN) [79], which is a modification of SOINN. Both of these algorithms have applications in spatial pattern recognition. Shen and Hasegawa also published a General Associative Memory (GAM) algorithm [80], which is an associative memory based algorithm, and a temporal version of the SOINN algorithm. The GAM model is constructed as a three-layer network structure. The input layer inputs key vectors, response vectors, and the associative relation between vectors. The memory layer stores input vectors incrementally to corresponding classes. The associative layer builds associative relations between classes. The method can incrementally learn key vectors and response vectors; store and recall both static information and temporal sequence information; and recall information from incomplete or noise-polluted inputs. Using the GAM model, Shen and Hasegawa demonstrated promising results of pattern recognition experiments using binary data, real-value data, and temporal sequences. 

GAM Architecture
The input layer accepts any data which is encoded as a sparse distributed vector. These input vectors are called key and response vectors. The input layer receives the key vectors and response vectors. Response vectors are the outputs of the key vectors. The memory layer classifies the vectors into separate classes based on the similarity of the vectors falling within a threshold limit. The similarity between two vectors is measured through a distance calculation using normalized Euclidean distance. The memory layer stores the input vectors incrementally to the corresponding classes as it receives the input vectors. If the input vector does not belong to an existing class in the memory layer, the GAM builds a new subnetwork in the memory layer to represent the new class. The GAM sends the class labels of subnetworks in the memory layer to the associative layer, and the associative layer builds relationships between the class of the key vector (the key class) and the class of the response vector (the response class) by using arrow edges. One node exists in the associative layer corresponding to one subnetwork in the memory layer. The arrow edges connecting these nodes represent the associative relationships between the classes. The beginning of an arrow edge indicates the key class; and the end of the arrow edge indicates the corresponding response class. The associative layer builds associative relationships among the classes. The GAM can store and recall binary or non-binary information, learn key vectors and response vectors incrementally, realize many-to-many associations with no predefined conditions, store and recall both static and temporal sequence information, and recall information from incomplete or noise-polluted inputs. Experiments using binary data, real-value data, and temporal sequences show that GAM is an efficient system.
GAM at first realizes auto-association, and then hetero-association as humans initially recognize or recall a class with a garbled or incomplete key vector, and then associate it with other classes according to the recognition of the key vector. A pattern recognition or pattern completion process uses auto-associative information and association between classes uses hetero-associative information.

GAM Analysis
The complete General Associative Memory (GAM) algorithm was analyzed by me as a baseline algorithm for this dissertation research. I observed that the GAM algorithm has an advantage as its datapath can be designed using the SIMD concepts. Also this algorithm fits well for a hybrid system level design as the control logic of the algorithm can be designed in CMOS, while the datapath and memory operations can be designed with a nanotechnology. 
Since the goal of this dissertation was set early to develop a methodology for hardware design, we realized that there is no need to design the complete GAM system. We rather identified one most common and critical component that is widely used in GAM and many other similar associative memory architectures. Thus Euclidean Distance Calculator was identified for this methodology development work. Also, the reason the example of the Euclidean Distance calculator was used for this research is that it is widely applied by many Neural Network and similar algorithms in software. However, there is no hardware implementation available or even published. Moreover, for the application areas of pattern recognition, facial recognition, robot vision, Digital Signal Processing, voice recognition, big data analysis, and database mining, all of those algorithms require to process massively parallel large number of wide-word input vector/data and therefore, we need a hardware system that can handle those large number of wide input vectors or neurons efficiently. Conventional CMOS technology is not enough for handling any such massively parallel applications, and as a result, this dissertation proposes an alternate, memristor-based nanotechnology using stateful IMPLY based FPGA design, MsFPGA (Memristive stateful logic Field Programmable Gate Array). 
This proposed MsFPGA is the new idea and development by itself, only motivated by the previous research on associative memories. It can be used for many other applications, the same way as CMOS-based FPGA architectures are being used now. However, to illustrate the proposed new device, we use the Euclidean Distance calculator, which can be applied as an important component in any of the above application areas listed. Besides, in this dissertation several potential applications of the proposed FPGA architecture and its associated design methodology are mentioned, such as pipelined and SIMD architectures, which are typical for neural network, machine learning, robot vision, and control related applications. 
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[bookmark: _Toc449095046]SOFTWARE – MATLAB CODES FOR ESOINN & GAM (PATTERN RECOGNITION ALGORITHMS)
The motivation of this work is explained in detail in Chapter 1 of this dissertation. For this research, various biologically inspired i.e. neural network based pattern recognition algorithms were studied. In order to understand and compare the performance, some of these promising algorithms were coded in MATLAB as a part of this research. The pseudo codes were published in many papers [51][52][61][73][79][80] and most of those algorithms were coded for this research. These algorithms were then simulated and a comparative performance for the pattern recognition application was conducted. Based on the performance comparison, GAM (General Associative Memory) [80] was found to be the best algorithm for both spatial and temporal pattern recognition.
		Although the original goal of this dissertation work was to develop a hardware design methodology for this best performing algorithm for its complete system, however, later we realized that the implementation of the complete system is unnecessary for providing the design methodology. Therefore, a common critical hardware component was selected to develop the design methodology that is used by most of the neural network and machine learning based algorithms. This component is the Euclidean Distance (ED) Processor/Calculator. ED calculator can be used in a massively parallel and pipelined datapath systems and thus it can have applications in pattern recognition, robot motion, big data analysis, image processing, voice recognition, DSP, database mining and may other hardware systems where large number of wide vectors need to be processed simultaneously. 
	The ESOINN [79] and GAM [80] codes are presented in Appendix A.
ESOINN (Enhanced Self-Organizing Incremental Neural Network) Model: 
The ESOINN algorithm is an Unsupervised Learning algorithm for Spatial Pattern Recognition. Unsupervised learning [79] studies how a system can learn to represent particular input patterns in a way that reflects the statistical structure of the overall collection of input patterns. By contrast with supervised learning or reinforcement learning, in unsupervised learning there are no explicit target outputs or environmental evaluations associated with each input.
GAM (General Associative Memory) Model: This algorithm is an improved version of ESOINN for temporal pattern recognition.
Handwritten digit database
 
This training dataset used for the algorithm was derived from the original MNIST database available at http://yann.lecun.com/exdb/mnist/ [70]
The training data file for each class 0 to 9 was generated. 
File format:
Each file has 1000 training examples. Each training example is of size 28x28 pixels. The pixels are stored as unsigned chars (1 byte) and take values from 0 to 255. The first 28x28 bytes of the file correspond to the first training example, the next 28x28 bytes correspond to the next example and so on. 

Algorithm Organization:
· Many classes
· Many sub-classes under each class
· Many nodes under each sub-class
Data Structure: 
Data of 10 classes - 0 – 9
In each class there are 1000 samples
So potentially there are 10*1000 = 10K nodes
Node = 28x28 = 784 elements with values between 0 to 255
Node = A vector of 784 elements with values from 0 to 255
Each image is node -> sub-class -> class  
When an image is received, first its class is found and then its subclass is identified.
Class will be indexed/identified by numbers 0 - variable
Sub-class will be indexed/identified by numbers 0 - variable
Nodes will be indexed/identified by numbers 0 - variable
Image can be catalogued --> NODE[CI][SCI][NI]
CI -> Class index
SCI -> Sub-class index
NI -> Node index
Node has a local maximum density -> apex of a sub class


Image Database: The image database is populated with 10,000 images, of which, the node distribution for digits 0 through 9 is shown in Appendix A-1. Each digit between 0 through 9 represents a Class. Each category in Appendix A-1 has 1000 images and each of these images represents a Subclass under the Class. Appendix A-2 shows MNIST handwritten digits. Each digit has a pixel size of 28x28. The pixels are stored as unsigned chars (1 byte) and take gray-scale values from 0 to 255. The first 28x28 bytes of the training file correspond to the first training example, the next 28x28 bytes correspond to the next example and so on. As such, 10,000 lines were concatenated in one training file. 
[bookmark: _Toc449095143]Table A- 1: Node Representation for Various Digits.
	Nodes
	Represent Image for Digit

	1-1000
	0

	1001-2000
	1

	2001-3000
	2

	3001-4000
	3

	4001-5000
	4

	5001-6000
	5

	6001-7000
	6

	7001-8000
	7

	8001-9000
	8

	9001-10000
	9


[image: ]
[bookmark: _Toc449095124]Figure A- 1: MNIST Handwritten Digits used in the experiments. Upper left: Classes 2, 4, 5, 8; Right: Subclasses of digit 4; Lower left: 3-D image of digit 4.

Training database: There are 400 images randomly picked from the image database and used for training, of which nodes 1-100 represent image 2; nodes 101-200 represent image 4; nodes 201-300 represent image 5 and nodes 301-400 represent image 8.
Test database: There are 200 images randomly picked from the image database and used for testing, of which nodes 1-50 represent image 2; nodes 51-100 represent image 4; nodes 101-150 represent image 5 and nodes 151-200 represent image 8. The number of test images is a smaller set compared to the number of training images.

Distance Threshold constant:
A distance threshold constant is used to control the classification of a new node to a new class or to an existing class. During the experimentation, the values of distance threshold are changed several times. A small value of distance threshold may result in a large number of classes. For example, after some trial and error, for the four broader input classes (digits 2, 4, 5, 8) as mentioned above, a large number of classes can be obtained at the output. With further experimentation, it is possible to obtain even fewer classes at the output by iterating on the distance threshold constant. 


ESOINN MODEL:
readdata.m
clear all
%open the file corresponding to digit 
k=1;
l=1;
for j=[1 4 5 8]
    filename = strcat('MNIST\data',num2str(j),'.txt');
    [fid(k) msg] = fopen(filename,'r');
    filename
    %read in the first training example and store it in a 28x28 size matrix t1 
    for i=1:100
        [data28x28,N]=fread(fid(k),[28 28],'uchar'); 
        data(l,:) = reshape(data28x28,1,28*28);
        dataX = reshape(data28x28,1,28*28);
        l = l+1;
        %imshow(data28x28');
        %pause(0.5)
    end
    k = k+1;
end
save ('numimagedat4_1.mat','data');

distcalc.m
function z = distcalc(w,p)

%DIST Euclidean distance weight function.
%  Algorithm
%  The Euclidean distance D between two vectors X and Y is:
%  D = sqrt(sum((x-y).^2))

[S,R] = size(w);
[R2,Q] = size(p);
if (R ~= R2), error('Inner matrix dimensions do not match.'),end

z = zeros(S,Q);
if (Q<S)
  p = p';
  copies = zeros(1,S);
  for q=1:Q
    z(:,q) = sum((w-p(q+copies,:)).^2,2);
  end
else
  w = w';
  copies = zeros(1,Q);
  for i=1:S
    z(i,:) = sum((w(:,i+copies)-p).^2,1);
  end
end
z = sqrt(z)/R;

findthreshold.m
% given a set of nodes, find maximum & minimum sim_threshold of each of the nodes.
function [TMax, TMin] = findthreshold(a,DIST_THRESH)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes
    
    TMax(i) = 0;
    TMin(i) = 9999;
    
    for j=1:NRow
        dist =  distcalc (a(i,:), a(j,:)');
        %fprintf('%f %f\n',DIST_THRESH, dist);
        if(dist < DIST_THRESH)
            if dist > TMax(i)
                TMax(i) = dist;
            end
            if dist < TMin(i)
                TMin(i) = dist;
            end
        end
        
    end
    
end

return

findwinners.m
% given a set of nodes, find winner and second winner.
function [winner, winner2, DWinner, DWinner2] = findwinners(a,x)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes
    dist(i) =  distcalc (x, a(i,:)');
end

if dist(1) < dist(2)
    winner = 1;
    winner2 = 2;
else
    winner = 2;
    winner2= 1;
end

for i= 3:NRow
  
    if dist(i) < dist(winner)
        temp = winner;
        winner = i;
        if dist(winner2) > dist(temp);
           winner2 = temp;
        end
    else 
        if dist(i) < dist(winner2)
            winner2 = i;
        end
    end
end
DWinner = dist(winner);
DWinner2 = dist(winner2);
return

find winnersX.m
% given a set of nodes, find winner and second winner.
function [winner, winner2, DWinner, DWinner2] = findwinnersX(a,x)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes
    dist(i) =  distcalc (x, a(i,:)');
end

if dist(1) < dist(2)
    winner = 1;
    winner2 = 2;
else
    winner = 2;
    winner2= 1;
end

for i= 3:NRow
    
    if dist(i) < dist(winner)
        temp = winner;
        winner = i;
        if dist(winner2) > dist(temp);
            winner2 = temp;
        end
    else
        if dist(i) < dist(winner2)
            winner2 = i;
        end
    end
end
DWinner = dist(winner);
DWinner2 = dist(winner2);
% if DWinner == 0
%     DWinner
%     sparse(a)
%     sparse(x)
% end

Return


find_neighbors.m
function [nghbrs] = find_neighbors(winner, W, DIST_THRESH)

% find how many nodes in the sub space

[SR SC] = size( W);
cnt = 1;
for i=1:SR
    dist = distcalc(W(winner,:), W(i,:)');
    if(dist < DIST_THRESH)
        nghbrs(cnt) = i;
        cnt = cnt + 1;
    end
end

end

return

soinn_subclass.m
clear all
load soinn_400.mat

% pick class

[RC SC] = size(class_of_node);

% initialize

for i = 1:SC
    visited(i) = 0;
    subclass(i) = 0;
end

% now do the classification

% "Connections matrix" is tracking all the connected nodes of a given node

for i = 1:SC
    k = 1;
    for j = 1:SC
        if(i ~= j)
            if (Conn(i,j) == 1)
                Connections(i,k) = j; % Connection recorded
                k = k + 1;
             
            end
        end
    end
end



% Find density of each node
for p = 1:NClass
    scindx = 1;
    
    for i = 1:SC
        if ((visited(i) == 0) && (class_of_node(i) == p))
            k=1;
            clear visited_t;
            %fprintf ('class = %d node = %d\n',p,i);
            marker = 99;
            max = h(i);
            max_node = i;
            
            visited_t(k) = i; % Keepingtrack of visited tree
            visited(i) = 1;   % Keeping track of the nodes that are already worked on
            
            current_node = i;
            new_marker = marker + 1 ; % this is a way to flag the last node of the tree
            
            [max, max_node, new_marker, visited, visited_t, k] = search_node_tree(Connections, max, max_node, marker, current_node, k, h, visited_t, visited);
            
            while (new_marker > marker)
                marker = new_marker;
                [max, max_node, new_marker, visited, visited_t, k] = search_node_tree(Connections, max, max_node, marker, current_node, k, h, visited_t, visited);
                current_node = max_node;
            end
            % done searching that tree
            % assign sub-class here
            [X, TNodesInTree] = size(visited_t);
            %disp ('visited_tree')
            visited_t;
            %disp('visited of current node')
            visited(current_node);
            
            for m=1:TNodesInTree
               subclass(visited_t(m) ) = scindx;
            end
            
            subclass_elems{p,scindx,:} = visited_t;
            subclass_apex{p,scindx} = max_node; % Node with highest density of a given subclass
            scindx = scindx + 1;
        end
        
    end
    p;
    scindxcount(p) = scindx -1;
    
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  For testing writing the results to a text file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fileID = fopen('organize.txt','w');
for i = 1: SC
%     %fprintf (fileID, 'class = %d subclass = %d node = %d\n',class_of_node(i), subclass(i), i);
     fprintf (fileID, '%d %d %d\n',class_of_node(i), subclass(i), i);
 end
 fclose(fileID);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Following is needed for subclass merging
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for p = 1:NClass
    for m = 1:scindxcount(p)
        sum(p,m) = 0;
        count(p,m) = 0;
    end
end

for p=1:NClass
    for m=1:scindxcount(p)
        for i=1:SC
            if( (class_of_node(i) == p) && (subclass(i) == m))
                sum(p,m) = sum(p,m) + h(i);
                count(p,m) = count(p,m) + 1;
            end
        end
    end
end

for p=1:NClass
    for m=1:scindxcount(p)
        Avrg(p,m) = sum(p,m)/count(p,m);
    end
end

[dataR dataC] = size(W);
for p=1:NClass
    fprintf('Total elements in class %d is %d\n',p,scindxcount(p));
    for m=1:scindxcount(p)
        clear other_nodes;
        if(scindxcount(p) > 1) % there is no point of finding winner and second-winners to other subclasses when we have only 1 subclass
            mxnode = subclass_apex{p,m};
            
            for j=1:scindxcount(p)
                scwinner(p,m,j) = 0;
                scwinner2(p,m,j) = 0;
                scDWinner(p,m,j) = 0;
                scDWinner2(p,m,j) = 0;
                all_elems_of_subclass = subclass_elems{p,j,:};
                [A Sz] = size(all_elems_of_subclass);
                other_nodes = zeros(Sz,dataC);
                
                for i=1:Sz
                    other_nodes(i,:) = W(all_elems_of_subclass(i),:);
                end
                subclass_elems{p,j,:}
                if(Sz == 1)
                    SnglNode = subclass_elems{p,j,:};
                    scwinner(p,m,j) = subclass_elems{p,j,:};
                    scwinner2(p,m,j) = subclass_elems{p,j,:};
                    scDWinner(p,m,j) = distcalc(W(SnglNode,:), W(mxnode,:)');
                    scDWinner2(p,m,j) = scDWinner(p,m,j);
                else
                    MoreNodeArray = subclass_elems{p,j,:};
                    [WW1,WW2,scDWinner(p,m,j), scDWinner2(p,m,j)] = findwinnersX(other_nodes,W(mxnode,:));
                    scwinner(p,m,j) = MoreNodeArray(WW1);
                    scwinner2(p,m,j) = MoreNodeArray(WW2);
                end
                clear other_nodes;
                fprintf ('p=%d m=%d, winner=%d, winner2=%d\n',p,m,scwinner(p,m,j), scwinner2(p,m,j));
            end
        end
        
    end
end

        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  Check if the two subclasses need to be merged
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for p=1:NClass
    for m=1:scindxcount(p)
        for j=1:scindxcount(p)
            fprintf ('==>[%d %d %d] %d %d %f %f\n',p,m,j,scwinner(p,m,j), scwinner2(p,m,j),scDWinner(p,m,j), scDWinner2(p,m,j));
        end
    end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If nodes from two sub classes are connected -> disconnect
% This is true for even if the two subclasses belong to two different class
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i = 1:SC
    for j = 1:SC
        if((i ~= j) && (subclass(i) ~= subclass(j)))
            if (Conn(i,j) == 1)
                Conn(i,j) = 0;             
            end
        end
    end
end


subclass_test.m
load soinn.mat
[SA SB] = size(class_of_node);

for ii = 1:SB
    if(class_of_node (ii) == 2)
        point_density(ii)
    end
end



updt_winner.m

function  [A] = updt_winner(winner, x, W, M)

[SR SC] = size( W);

for j = 1:SC
    dW(j) = x(j) - W(winner,j);
    A(j) = W(winner,j) + dW(j)/M(winner);
end

return


updt_neighbors.m
function  [W] = updt_neighbors(winner, nghbrs, x, W, M)

[SR SC] = size( W);

[SNR SNC] = size(nghbrs);

for k = 1: SNC
    if(nghbrs(k) ~= winner) % We do not want to update winner again
        for j = 1:SC
            dW(j) = x(j) - W(nghbrs(k),j);
            W(nghbrs(k)) = W(nghbrs(k),j) + dW(j)/(100*M(winner));
            %fprintf('neighbor node = %d\n',nghbrs(k));
        end
    end
    
end

return

updt_connection_matrix.m
function [Conn] = update_connection_matrix (Conn, CN, value)

[SR, SC] = size(Conn);

for i = 1:SR
    Conn(CN,SR) = value;
end

return;

updt_conn_edge_n_point_density.m
function [Conn, Age, point_density] = update_conn_edge_n_point_density(W, Conn, Age, winner)

% Conn -- Connectivity matrix
% W -- Weight vectors of each node
% Age -- age of each connection. So all possible connection edge will have
% an "age" value
% winner - winner node
% Size of connection matrix will determine the 
% size of existing node space
%disp('Weight::')
%W

[SR, SC] = size(Conn);

Agemax = 100;


point_density = zeros(SR,1);
avg_density = zeros(SR,1);

% Search for all connectivity to winner and update their connection age

for i = 1: SC
   if Conn(winner, i) == 1
        Age(winner, i) = Age(winner, i) + 1;
       
        if Age(winner, i) > Agemax
            Conn(winner, i) = 0;
        end
    end
end

% Now calculate the point density of ALL the nodes 
for i = 1: SR
    dist = 0;
    M=0; % Number of connections with the given node "i"
    for j = 1: SC
        if i ~= j
            if Conn(i, j) == 1
                % W(i,:)
                % W(j,:)
                dist = dist + distcalc(W(i,:),W(j,:)');
                M = M + 1;        
            end
        end
    end
    
    % Calculate Average Density
    if(M > 0)
        avg_density(i) = dist/M;
    else
       avg_density(i) = 0;
    end
    if M == 0
        point_density(i) = 0;
    else
        point_density(i) = 1/ (1 + avg_density(i))^2;
    end 
end
return
        
search_node_tree.m
function [max, max_node, new_marker, visited, visited_t, k] = search_node_tree (Connections, max, max_node, marker, current_node, k, h, visited_t, visited)

% Now lets find the largest connected tree because that will determine the
% final size of the "Connections" matrix

[CR, CC] = size(Connections);
new_marker = marker;
k;

for jc = 1:CC % checking connections of the nodes connected to i
    j = Connections(current_node,jc);
    if ( j ~= 0)
        %fprintf ('=> %d %d %d %d %d\n',current_node, j, k, visited(current_node), visited(j));
    end
    if (  ( j ~= 0) && (max_node ~= j))
        if (visited(j) ~= 1)
            k = k+1;
            visited_t(k) = j;
            visited(j) = 1;
            if (h(j) > h(max_node))
                max = h(j);
                max_node = j;
                new_marker = marker + 1;
            end
        end
        %fprintf ('===> %d %d %d\n',current_node, j, k);
        visited_t;
    end

soinn.m
clear all    
load numimagedat4.mat 

% Select two random entries from the image database to  
% initialize the SOINN system 
dist = 0;

[DataSize,DataElems] = size(data);

DIST_THRESH = 3.00; %% used for determining the neighboring nodes

while(dist < 2.5) 
    randindx1 = (round(rand(1)*(DataSize-1)) +1);
    randindx2 = (round(rand(1)*(DataSize-1)) +1);   
    W(1,:) = data(randindx1,:); 
    W(2,:) = data(randindx2,:); 
    sd = 0;

% i stands for row vector and ik stands for column values in each row

    for ik=1:784
        sd = sd + (W(1,ik) - W(2,ik))^2;
    end
    dist = sqrt(sd)/784;
    TMax(1) = dist;
    TMax(2) = dist;
end
% Now the system has two nodes
N= 2;
NClass = 2;
%class(class,node#)=node#

class_of_node(1) = 1;
class_of_node(2) = 2;

Conn(1,1) = 1;
Conn(1,2) = 0;
Conn(2,1) = 0;
Conn(2,2) = 1;

Age(1,1) = 0;
Age(1,2) = 0;

M(1) = 1;
M(2) = 1;

% Introduce new nodes (i.e. images) to the system
for i = 1: DataSize-2
    indx = i;
    % CN --- index of the nodes as a new input is introduced
    CN = 2 + i;
    x = data(indx, :);
    Conn(CN,CN) = 1;
    Age(CN,CN) = 0;
    [winner, winner2,DWinner, DWinner2] = findwinners(W,x);
    W(CN,:)= x;
    M(CN) = 1;
    % update connection matrix for the new member with no connection to
    % begin with
    [Conn] = update_connection_matrix (Conn, CN, 0);
    % W - Weight matrix
    % Conn - Connection matrix
    % Age = Age matrix
    % winner - ID of the winner node
    if DWinner > TMax(winner) % A new class.
        NClass = NClass+1;
        class_of_node(CN) = NClass;
        [TMax, TMin] = findthreshold(W,DIST_THRESH);
        Conn(CN, winner) = 0;
        Age(CN, winner) = 0;
        Conn(CN, winner2) = 0;
        Age(CN, winner2) = 0;
        point_density(CN) = 0;
        size(Conn);
        
    else % step4 - member of existing class of the winner node
        class_of_node(CN) = class_of_node(winner);
        M(winner) = M(winner) + 1;
        [TMax, TMin] = findthreshold(W,DIST_THRESH);
        Conn(CN, winner) = 1; % establishing a connection between winner and the new node
        Conn(winner, CN) = 1;
        dw1w2 = distcalc(winner, winner2);
        Age(CN, winner) = 0; % setting age to 0
        Age(winner, CN) = 0;
        if(dw1w2 < DIST_THRESH)
            Conn(winner, winner2) = 1;
            Conn(winner2, winner) = 1;
            Age(winner, winner2) = 0;
            Age(winner2, winner) = 0;
        end
        %%% Update weight of winner and its neighbors
        % find neighbors of winner
        [nghbrs] = find_neighbors(winner, W, DIST_THRESH);
        % update weight of winner
        [W(winner,:)] = updt_winner(winner, x, W, M);
        % update weight of neighbor
        [W] = updt_neighbors(winner, nghbrs, x, W, M);
        % disp('Weight::');
        %W
        [Conn, Age, point_density] = update_conn_edge_n_point_density(W, Conn, Age, winner);
        % Now that I updated the point density of one node, I need to
        % update the accumulated point density of every one

    end
    size(point_density);
    point_density';
    for kk = 1: i-1 
       
       % kk is the row and CN is the column. 
       % kk tracks the history of the
       % previous learnings as a row of the
       % "point_density_history" matrix.
       % Since each row has to hold same number 
       % of columns and as we learn
       % new items, number of columns grow, 
       % we have to zero pad the earlier
       % rows to accommodate the size growth for the new entry

       point_density_history(kk,CN) = 0;
    end
    
    point_density_history(i,:) = point_density';
    [sr, sc] = size(point_density_history);
    
    for col = 1:sc   
        NN = sum(spones(point_density_history(:,col)));
        accum_point_density(col) = sum(point_density_history(:,col));
        mean_accum_point_density(col) = accum_point_density(col)/NN;  
        h(col)= mean_accum_point_density(col);
    end
    
end

save('soinn_400.mat')


GAM MODEL:


· soinn_12_train_v0: Implementation of algorithm 1 & 2 for training the memory layer and creating the associative layer.

% In algorithm at first we put all nodes into one class
% For training you go with known classes of data as suggested in GAM
% Or you go with unsupervised learning as suggested in SOINN
%
% ALGORITHM 1: Learning of the memory layer
% ALGORITHM 2: Building Associative Layer

clear all
tic
for ClsName=1:10
    FName = strcat('traindata_p',num2str(ClsName),'.mat');
    FName
    load ( FName );
    [DataSize,DataElems] = size(data);
    
    % introduce new node - Step 4
    Class(ClsName).Node(1).W = data(1,:);
    Class(ClsName).Node(1).Th = 0;
    Class(ClsName).Node(1).M = 1; % Frequency of winning of that node
    Class(ClsName).Node(1).N = 0; %
    Class(ClsName).NodeCount = 1;
    ClassCount = 1;
    Class(ClsName).ConnMatrix(1,1) = 1;
    Class(ClsName).ConnAge(1,1) = 1;
    
    
    for indx = 2: DataSize
        x = data(indx,:);
        DoneClassification = 0; % Reset it every time 
                                 % you processed a new node
        XX= ['Training Class => ',num2str(ClsName),' New data => ',num2str(indx)];
        disp(XX);
        
        % Find winner and second winner - step 6 - 8
        
        WinnerNode = 1;
        Winner2Node = 1;
        WinnerDistance = 0;
        Winner2Distance = 0;
        
        for Ni = 1:Class(ClsName).NodeCount
            dist = distcalcSOINON(Class(ClsName).Node(Ni).W ,x);
            %dd = sprintf ('Now Processing indx:  %5d -> Node: %5d dist: %f [Node Th: %f]' , indx, Ni, dist, Class(ClsName).Node(Ni).Th );
            %disp(dd);
            
            if (dist > Class(ClsName).Node(Ni).Th)      % Step 8
                %disp('dist > thr');
                if Class(ClsName).Node(Ni).Th == 0
                    %disp('=> Wd = 0');
                    WinnerNode = Ni;
                    Winner2Node = Ni;
                    WinnerDistance = dist;
                    Winner2Distance = dist;
                    Class(ClsName).Node(Ni).Th = dist;
                else
                    if WinnerDistance == Winner2Distance
                        %disp( '=> Wd == W2d');
                        if WinnerDistance == 0
                            Winner2Node = Ni;
                            Winner2Distance = dist;
                            WinnerNode = Ni;
                            WinnerDistance = dist;
                        elseif dist > WinnerDistance
                            Winner2Node = Ni;
                            Winner2Distance = dist;
                        else
                            WinnerNode = Ni;
                            WinnerDistance = dist;
                        end
                    elseif dist < Winner2Distance
                        %disp('=> dist < W2d');
                        Winner2Node = Ni;
                        Winner2Distance = dist;
                    else
                        %disp(['  > th but ..',WinnerDistance,Winner2Distance]);
                    end
                end
                
            else
                % Update winner and second winner - Step 6
                if dist <=  Class(ClsName).Node(Ni).Th
                    Winner2Distance = WinnerDistance;
                    Winner2Node = WinnerNode;
                    WinnerDistance = dist;
                    WinnerNode = Ni;
                    
                elseif dist < Winner2Distance
                    
                    Winner2Distance = dist;
                    Winner2Node = Ni;
                end
            end
            %dd = sprintf ('Node:  %5d -> Wd: %5.3f WN: %5d W2d: %5.3f W2N: %5d' , Ni, WinnerDistance,WinnerNode, Winner2Distance, Winner2Node );
            %disp(dd);
        end
        
        %Class(Ci).NodeCount
        
        
        %dd = sprintf('Classification Done for indx: %d, NodeCount: %d, Wd: %f Th: %f', indx,Class(ClsName).NodeCount,WinnerDistance, Class(ClsName).Node(WinnerNode).Th);
        %disp(dd);
        Class(ClsName).Node(WinnerNode).M = Class(ClsName).Node(WinnerNode).M + 1; % step 6
        
        if WinnerDistance > Class(ClsName).Node(WinnerNode).Th % Step 8
            %disp( ['introduce new node to the class', WinnerDistance, ' > ' ,Class(ClsName).Node(WinnerNode).Th ]);
            NNi = Class(ClsName).NodeCount+1;
            Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1;
            Class(ClsName).Node(NNi).W = x;
            Class(ClsName).Node(NNi).M = 1;
            Class(ClsName).Node(NNi).N = 0;
            % Update thresholds

            Class(ClsName).Node(NNi).Th = dist;
            Class(ClsName).Node(Ni).Th = dist;
        elseif WinnerDistance  == Winner2Distance
            %disp( ['introduce new node to the class', WinnerDistance ' == ' ,Winner2Distance]);
            NNi = Class(ClsName).NodeCount+1;
            Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1;
            Class(ClsName).Node(NNi).W = x;
            Class(ClsName).Node(NNi).M = 1;
            Class(ClsName).Node(NNi).N = 0;
            % Update thresholds
            Class(ClsName).Node(NNi).Th = dist;
            Class(ClsName).Node(Ni).Th = dist;
        else  % Step 10
            delS1 = 1/Class(ClsName).Node(WinnerNode).M;
            delS2 = 1/Class(ClsName).Node(Winner2Node).M;
            Class(ClsName).Node(WinnerNode).W = Class(ClsName).Node(WinnerNode).W + delS1*(x-Class(ClsName).Node(WinnerNode).W); % eq 10
            Class(ClsName).Node(Winner2Node).W = Class(ClsName).Node(Winner2Node).W + delS2*(x-Class(ClsName).Node(Winner2Node).W); % eq 11
            Class(ClsName).Node(WinnerNode).Th = (Class(ClsName).Node(WinnerNode).Th + WinnerDistance)/2; %eq 12
        end
        Class(ClsName).ConnMatrix(WinnerNode,Winner2Node) = 1; %Step 13
        Class(ClsName).ConnAge(WinnerNode,Winner2Node) = 0; %Step 14
        Class(ClsName).ConnMatrix(Winner2Node,WinnerNode) = 1; %Step 13
        Class(ClsName).ConnAge(Winner2Node,WinnerNode) = 0; %Step 14
        %image(reshape((Class(ClsName).Node(WinnerNode).W),28,28)')
        %pause(1)
        % Step 15
        [NS_1 NS_2] = size(Class(ClsName).ConnAge(WinnerNode,:));
        for jk = 1:NS_2
            if Class(ClsName).ConnMatrix(WinnerNode,jk) == 1
                Class(ClsName).ConnAge(WinnerNode,jk) = Class(ClsName).ConnAge(WinnerNode,jk) + 1;
            end
        end
    end
    
    [Ns1 Ns2] = size(Class(ClsName).Node);
    
    MostVisNode = 1;
    MostVisNodeM = 1;
    for Mn=1:Ns2
        if Class(ClsName).Node(Mn).M > MostVisNodeM
            MostVisNode = Mn;
            MostVisNodeM = Class(ClsName).Node(Mn).M;
        end
    end
    
    % Build associative layer
    AssocClass(ClsName).Wb = Class(ClsName).Node(MostVisNode);
    AssocClass(ClsName).Mb = 0;
    
    
end



save('soinn_trained_assoc.mat')
toc

· soinn_2_v0: training the associative layer with temporal sequence.

% Learning of the associative layer
% 2-4-1-3
% key-rwaponse vector
% 2-4
% 4-1
% 1-3
clear all
tic % to measure the CPU time of the algorithm
load('all_input_data_flat.mat');

% load the pre-trained node space
load('soinn_trained_assoc.mat');

% Start with a key/control vector
[CDCnt CDLen] = size(Control_Vec);

AssocClassConnMatrix = zeros (10,10);
RespClass  = zeros (10,10);

for j = 1:CDCnt
    % Here we find which class a given Control Vector belongs to
    j
    [MinClassCnt MinNodeCnt MinDistCnt] = memlayer_classification_v0(Control_Vec(j,:),Class)
    [MinClassRes MinNodeRes MinDistRes] = memlayer_classification_v0(Response_Vec(j,:),Class)
    
    % TBD: Update the node space of the class with the information of the new
    % node
    
    % Build Association - Step 19,23,26/A-2
    if AssocClassConnMatrix(MinClassCnt,MinClassRes) <= 0
        AssocClassConnMatrix(MinClassCnt,MinClassRes) = 1;
    else
        AssocClassConnMatrix(MinClassCnt,MinClassRes) =  AssocClassConnMatrix(MinClassCnt,MinClassRes) + 1;
    end
    
    % associative index of Node i
    AssocIndxNode(MinClassCnt,MinNodeCnt) = MinNodeRes;
    AssocIndxClass(MinClassCnt,MinNodeCnt) = MinClassRes;
    
    % Response class of Node i
    RespClass(MinClassCnt,MinClassRes) = RespClass(MinClassCnt,MinClassRes) + 1;
end

toc

Supporting Codes:
· readdata: For creating the training and testing vector for creating memory layer.

% Generating train and test data from MNIST data set
clear all
%open the file corresponding to digit 
k=1;
for j=[1 2 3 4 5 6 7 8 9 0]
    filename = strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num2str(j),'.txt');
    [fid(k) msg] = fopen(filename,'r');
    filename
    l=1;
    %read in the first training example 
    % and store it in a 28x28 size matrix t1 
    for i=1:2:100
%    for i=2:2:100
        [data28x28,N]=fread(fid(k),[28 28],'uchar'); 
        data(l,:) = reshape(data28x28,1,28*28);
        dataX = reshape(data28x28,1,28*28);
        l = l+1;
        %imshow(data28x28');
        %pause(0.5)
    end
    fname = strcat('traindata_p',num2str(k),'.mat');
%    fname = strcat('testdata_p',num2str(k),'.mat');
    save (fname,'data');
    k = k+1;
end

· prep_key_response_vector_data: For creating temporal sequence for training and inference.

% Generating train and test data 
% from MNIST data set
clear all
%open the file corresponding to digit
k=1;
for j=[1 2 3 4 5 6 7 8 9 0]
    filename = strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num2str(j),'.txt');
    [fid(k) msg] = fopen(filename,'r');
    filename
    l=1;
    %read in the first training example 
     % and store it in a 28x28 size matrix t1
    for i=1:2:100
        %    for i=2:2:100
        [data28x28,N]=fread(fid(k),[28 28],'uchar');
        data(k,l,:) = reshape(data28x28,1,28*28);
        dataX = reshape(data28x28,1,28*28);
        l = l+1;
    end
    k = k+1;
end


% Create control and response vectors from the training data
l = 1;
for j=1:50
    
    Control_Vec(l,:) =  data(1,j,:);
    Response_Vec(l,:) = data(3,j,:);
    l = l+1;
    Control_Vec(l,:) =  data(2,j,:);
    Response_Vec(l,:) = data(4,j,:);
    l = l+1;
    Control_Vec(l,:) =  data(4,j,:);
    Response_Vec(l,:) = data(1,j,:);
    l = l + 1;
end

fname = strcat('all_input_data_flat','.mat');
save (fname,'data','Control_Vec','Response_Vec');

· memlayer_classification_v0: To classify a new incoming node. Used in training temporal sequence.
function [MinClass MinNode MinDist] = memlayer_classification_v0(x,Class)

% x = input vector
% Class = Node Space information
% Class =
%
%           Node: [1xn struct]
%      NodeCount: n
%     ConnMatrix: [pxp double]
%        ConnAge: [pxp double]

tic

[a b] = size(Class);

MinDist = 99999;
MinClass = 0;
MinNode=0;

for m=1:b
    Class(m).NodeCount;
    [Ns1 Ns2] = size(Class(m).Node);
    MostVisNode(m) = 1;
    for n=1:Ns2
        dist = distcalcSOINON(Class(m).Node(n).W, x);

        if dist < MinDist
            MinDist = dist;
            MinClass = m;
            MinNode = n;
        end
    end
end


toc

distcalcSOINON.m
function z = distcalcSOINON(w,p)

%DIST Euclidean distance weight function.
%  Algorithm
%  The Euclidean distance D between two vectors X and Y is:
%  D = sqrt(sum((x-y).^2))

[S,R] = size(w);
[R2,Q] = size(p);

if (R ~= Q),  error('Inner matrix dimensions of R and Q do not match.'),end
if (S ~= R2), error('Inner matrix dimensions of S and R2 do not match.'),end

Tot = 0;

for i = 1:R
    Tot = Tot + (w(i) - p(i))^2;
end
z = sqrt(Tot)/R;

[bookmark: _GoBack]

52

image1.png




